Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 69(1) 2015 27-47

ISAS

Three-stage Optimal Sampling Plans for Group Testing Data

Osval A. Montesinos-L()pezl’z, Kent Eskridge”, Abelardo Montesinos-L(')pez3 and Jose Crossa*

"Facultad de Telematica, Universidad de Colima, Avenida Universidad 333, Col. Las Viboras, C.P. 28040
Colima, Meéxico.
2 University of Nebraska, Statistics Department, Lincoln, Nebraska, USA.
3Departamento de Estadistica, Centro de Investigacion en Matemdticas (CIMAT), Guanajuato, México.
*Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal
6-641, Mexico, D.F., Mexico.

Received 19 August 2014; Revised 23 February 2015; Accepted 05 March 2015

SUMMARY

In surveys, sample size planning is important for achieving precise estimates at a low cost. However, this issue is not
adequately addressed for group testing data obtained from a three-stage sampling process. In this study, we obtained the optimal
allocation of localities (/), fields (m) and pools per field (g) in a three-stage group testing survey for a given pool size (s).
These optimal values were obtained under the assumption of equal locality and field sizes. To handle the unequal sample size
case, we derived the relative efficiency (RE) of unequal versus equal locality and field sizes to estimate the proportion. By
multiplying the sample of localities and fields obtained assuming equal cluster size by the inverse of the corresponding REs,
we adjusted the sample size required in the context of unequal localities and field sizes. We also show the adjustments needed
for correctly allocating localities and fields in order to estimate the required budget and achieve a certain power or precision.

Keywords: Three-stage, Group testing, Optimal sample size, Relative efficiency, Power, Precision.

1. INTRODUCTION

Group testing, attributable to Dorfman (1943), was
developed to make possible to perform the very large
number of tests for venereal diseases required by the
United States Defense Forces during World War I1
(Federer 1994). This technique is useful whenever a
large population of individuals has to be subjected to
the same test. The idea is to group (pool) objects and
test pools instead of individuals. If a pool tests negative,
then all subjects in the pool are declared free of
infection. A pool tests positive if at least one individual
within the pool is positive. Group testing is useful to
estimate the proportion of a population that possesses
a rare characteristic (Schliep et al. 2003).
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The successful application of group testing for
classification and for estimating prevalence has been
documented. In classification, group testing has been
used in drug detection, blood donation, detection of rare
diseases in plants, animals and humans, science fiction,
information theory, and identification of clones from a
genomic library for a particular gene (Wolf 1985, Dodd
et al. 2002, Remlinger et al. 2006, Verstraeten ef al.
1998, Bilder 2009 and Schliep ef al. 2003). For
estimating prevalence, it has been used to estimate the
proportion of transgenic maize and the prevalence of
certain diseases in animals and humans (West Nile
virus, foot and mouth disease, HIV, syphilis, chlamydia
and gonorrhea, among others) (Tebbs and Bilder 2004,
Peck 2006, Hernandez-Suarez et al. 2008, Yamamura
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and Hino 2007, Montesinos-Lopez et al. 2010, 2011).
To determine sample size when estimating prevalence
(1), most research assumes that a simple random sample
(SRS) of individuals was taken, even though it is a well-
known fact that SRS is often not a cost-efficient
strategy. However, surveys conducted to estimate the
proportion of transgenic maize in Mexico have had a
multilevel structure, where: (1) researchers take a
sample of localities (primary sampling units=PSU) of
the frame of localities; (2) in each locality they take a
sample of fields from the frame of fields (secondary
sampling unit=SSU); (3) in each field they take a
sample of plants (elementary sampling units); (4) from
the sample of plants per field, they form pools of size
(s); and (5) a diagnostic test is performed on each pool
(Pifieyro-Nelson ef al. 2009).

This data-collecting approach (multistage
sampling) is common in large national databases
because it is the most cost-efficient sampling design
when the population of interest consists of
subpopulations, also called clusters, that are used for
selection. In practice, multistage samples are preferred
because the interviewing or testing costs are greatly
reduced if the individuals are geographically or
organizationally grouped. Such sample designs reflect
the organization of the natural and social worlds. Also,
multistage surveys do not require a list of all elementary
units, since the sample is selected in stages, often taking
into account the hierarchical (nested) structure of the
population. However, multistage sampling design leads
to dependent observations, and failing to deal with this
properly in the statistical design and analysis may lead
to erroneous inferences.

In practice, unequal locality and field sizes are the
rule, and it is not possible to specify correctly the
distribution of locality and field sizes at the beginning
of a study. Therefore, first we obtained optimal sample
sizes for a three-stage group testing survey assuming
equal locality and field sizes, i.e., we used average
locality and field sizes. Optimal sample sizes were
derived using a mixed logistic group testing model and
a first-order marginal quasi-likelihood (MQL) approach,
where we assumed clusters were randomly sampled
from a large number of clusters. To compensate for the
loss of efficiency due to varying locality and field sizes,
we derived the relative efficiency (RE) to adjust the
optimal sample sizes. The required sample size for

varying locality and field sizes can be obtained by
multiplying the required sample size for an average
cluster (locality or field) size by the inverse of the RE
(Ahn et al. 2012).

In this article, section 2 presents the random
logistic model used for individual testing. Section 3
describes the random logistic model used for group
testing. Section 4 provides an approximate marginal
variance of the proportion. In section 5, we derive
sample sizes without constraints. Section 6 gives the
optimal samples (/, m, g) given a pool size (s) under
constraints and assuming equal cluster size, while
section 7 provides tables for sample size determination
assuming equal cluster sizes. Section 8 gives
adjustments for unequal locality and field sizes. Section
9 gives an example for estimating the proportion of
transgenic plants, and the discussion and conclusions
are presented in section 10.

2. RANDOM LOGISTIC MODEL FOR
INDIVIDUAL TESTING

In the context of individual testing, the standard
random logistic model is obtained by conditioning on
all fixed and random effects. The responses Yy are
independent and Bernoulli distributed with probabilities
T assuming that these probabilities are not related to
any covariable (Moerbeek et al. 2001a). Thus the linear
predictor using a logit link is equal to

logit (1) = ln[1 i )

n,

B, +a + bg )
where Ny is the linear predictor that is formed from a
fixed part () and two random parts (a, and bij), where
ar~N(0, o2) and b, ~ N(0, o7 ). We also assume that
the random components are mutually independent.

Therefore, Equation (1) can be written in terms of the
probability of a positive individual as:

T, = ny(ﬁo, o, 0,)
= [1 +exp{~(B, + a,+ b )}T" (2)

The mixed logit model for binary responses can
be written as the probability m, plus a level 1 residual
denoted €

Vi = o T ey 3)
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where € has zero mean and variance V(y[jklai’ by) =
m, (1—71'!.].) (Goldstein 1991-2003, Goldstein and Rabash
1996, Breslow and Clayton 1993, Rodriguez and
Goldman 1995, Candy 2000, Moerbeek and Van
Breukelen 2001a, Candel and Van Breukelen 2010,
Skrondal and Rebe-Hesketh 2007). This model is
widely used for estimating optimal sample sizes since
the variance components are assumed to be known
(Goldstein 1991-2003, Rodriguez and Goldman, 1995,
Candy 2000, Moerbeek and Van Breukelen 2001a, b).

3. RANDOM LOGISTIC MODEL FOR GROUP
TESTING

Suppose that, within field j, each plant in the ith
locality is randomly assigned to one of the g; pools.
Let y,,. = 1 if the kth plant in the rth pool in the jth
field 1n locality i is positive and y,, = 0 otherwise, for

ijkr
i=1,2,.,0Lj=12, .om,r=12 .. g andk=1,

2, S, S the pool size. Note that Vit is not observed,

except when the pool size is 1. Let Z, = I(E}Z r>0)
be the indicator variable, whether the rth pool inside
the field j in locality 7 is positive (Z,. = 1) or negative
(Zijr = 0). Thus we only observe tﬂe random binary
variable Z, that takes the value of Z, = 1 if the rth
pool in field j and locality i tests positive, and Z_ = 0
otherwise. Conditional on the random effects [a; and
bl.j.], pools within field j and locality 7 are independent.
Therefore, the probability that the #¢4 pool in field j and
locality 7 is positive is given as

Sijr
”I; =P(Zijr =1|01,l’)l]) = Se +(1_Se _Sp)H(l_ﬂijk)
k=1
where S, and Sp denote the sensitivity and specificity
of the diagnostic test, respectively. S, and S are
assumed constant and close to 1 (Chen et al. 2009). For
simplicity, in planning the required sample size we will
assume an equal pool size, s, in all fields. This is a
reasonable assumption for sample size determination,
and 77 is reduced to:

7 = PZy =1la.by) =S, +p(-m)  (4)

where ¢ = (1 -5, - Sp). The mixed group testing logit
model for binary responses can be written as the

probability 77, plus a level 1 residual denoted ef;, :

where 77, as given in Equation (4) and e, has zero

mean and variance 1(Z, a,, b,) = 7} (1= 7). Now let
0 = (B,. 0, 0,) denote the vector of all estimable
parameters. The multilevel likelihood is calculated for
each level of nesting. First, the full conditional
likelihood ignoring the constant for pool 7 in field j and

locality i, is given by:
ij" (9 | a, bl_]) = [7[5 ]Zijr [1 —7[5 ]I—Zijr (6)

By multiplying the conditional likelihood
(Equation 6) by the density of a, and by» and integrating
out the random effects, we get the marginal
(unconditional) likelihood.

LO|y) = Hizl{_’.[H:iIJ‘(Hlelijr(a|ai’bij)
f(by)dby) f (a;)da;1},

where f(a,) is the density function of a, and d(bjj) is the
density function of bl.j. Unfortunately, this unconditional
likelihood is intractable. There are various ways of
approximating the marginal likelihood function. Two of
them are: (1) to use integral approximations such as the
Gaussian quadrature; and (2) to linearize the non-linear
part using Taylor series expansion (TSE) (Moerbeek et
al. 2001a, Breslow and Clayton 1993). The marginal
form of the generalized linear mixed model (GLMM)
is of interest here, since it expresses the variance as a
function of the marginal mean.

4. APPROXIMATE MARGINAL VARIANCE OF
THE PROPORTION

The marginal model can be fitted by integrating
the random effects out of the log-likelihood and
maximizing the resulting marginal log-likelihood or,
alternatively, by using an approximate method based on
TSE (Breslow and Clayton 1993). Next, 7} is
approximated using a first-order TSE around a, = 0 and
bl.j. =0, as

4
ij

(@ —0)+ ol
al' -
b

a;=b;; =0 u

(b; =0)

PP
7Z-t'j Nﬂ-ij |ai:bij:0 +

i =8 =0

(7
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ﬂ'-lf = ﬂ'-lf |ai :bij=0 +S¢(l - ”lj )s_lﬂ’-ij (1 - ﬂ”l]) |ai:bl-j:0 (ai)
+ sl — 7y 75 (1= ;) liy=t;=0 (B3

7l = 70 +sp(l- Ay # (1~ F)a + 51— ) 7 (1 - )by
(7

where 77 =7 |ai:bij:0: Se+@(1-[1+exp(=£)I")

and 7 = |, = —0=[1+exp(-f I, since a, and b,

are independent and identically distributed (iid) and we
use the fact that

14 14 p 14
orf orxf om; omf Oorxf om;

a; ;0 ’ b; TTij abij’
o7 _dmy; Oy

a_a,- _aTi- _a_nij = (1- ”y') and
or¥

it/ sp(1— 7 ys-1
ij
Now, by substituting Equation (7) in Equation (5)
we can approximate Equation (5) by

Zj, = 70 + 51— #Y (1~ F)a; + sp(1- 7!

Z(1-7)b; +ef;, 8)
Therefore, the approximate marginal variance
based on a first-order TSE of the responses of a pool
is equal to:
Var(Z,) ={sp(1 -7y {A(1-7) Plog + 0]
+7ZP(1-7P)

where the variance of ef}

- was approximated by

DIMN DI
7 is a

mg

#P(1-7P). Note that Z=

moment estimator of E(7f/) and its variance is equal
to:

lspd -7y P{Z(1-7%) )05

l
(=2 PEA-B) o} ArA-27)
Im Img

Var(Z) =

©

Recall that we will select a sample of / localities
and m fields, assuming that the same number of pools
per field will be obtained, i.e., g=g. Since the
probability of success is not a constant over trials but
varies systematically from field to field, the parameter
7. is a random variable with a probability distribution.
Therefore, it is reasonable to work with the expected

value of TT,; Across localities and fields to determine
sample size. To approximate E(ﬂl.j), we take advantage
of the relationship between Z and E(7}):
Z=E@x})=ES,+p(1-7;))
=ES)+E(p(l-7;)*) =S, +pE(K)  (10)

where K = (1 — 77:1.].)5. Using a first-order TSE around a,
=0 and bl.j. = 0, we can approximate K as

oK oK
K=K |a,~=b,-j=0 +— (ai _0)+_ (bl] _0)
i a; :bij=0 ij g :bij=0
K =K +s(1-7)y 71— 7)aq; + s(l—ﬁ)s‘lﬁ'(l—ﬁ')bij
(11)

where K =K, —p=0=A=[1+exp(=A)I"") = (1-7)
and we use the fact that

0K _ 0K 07; 0K _ 0K 9m;

a 7y Oa; by my oby’
dm; dm; O
a; B ob; B ony; m(1 - m,) and
B_K = S(l—ﬂij ys-1
7
Then
E(K) =R

But doing TSE of first order we obtain that (1 —
E(m)) = (1-7) =K and so
E(K) = (1 - E(m))y
That is, we approximate E(K) = E[(1 — n:l.j.)s] by [1
- E(n:l.j)]s. Thi_s implies that E(1)}) = S, + (1 - E(7))*,
and since Z is an estimator for E(z}), then an
estimator for E(”g) can be obtained from

S, + @1 - E(m)y = 7

Therefore, an estimator for E(ny.) is

——~ \I/s

1
— S, —E(xf -Z\)s
E(][l])zl— ﬂ =1- Se—Z
@ Q@

The variance of this estimator, E@), can be
approximated from the variance of Z (Equation 9) with
a first-order TSE around E(7}) of the function g(z) =

(Se(; < js . After some algebra we get:
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2

V(E(my) = 98(2) Var(Z)
0z =E(z]))
L
where M=l R l=; However,
iz 5| ¢ ¢ sp(-7y"

since E(7Z,§-’) doesn’t have a close exact form, we
replace this with ZP and obtain

— .o of V()
V(E(r;)=V(#) = -4+t 4~
(E(;)) =V (%) U i g (12)
where o2 = {(#(1-7))0?, o} ={7(1-7%)} 0},

2,
_ﬁ-P)s ﬁl’(l_ﬁ-l’)
SZ((D)Z/S

5. SAMPLE SIZES WITHOUT CONSTRAINTS

(ORY

and 77 =S, + p(1-7)".

5.1 How to obtain a Certain Width of the
Confidence Interval

Assume the researcher is interested in choosing the
number of localities, given the number of fields (m),
pools per fields (g) and pool size (s), to obtain a
specified width (w) of the confidence interval (CI) of
the proportion. Assuming that the distribution of 7 is
approximately normal with a mean 7 and a fixed
variance V (7), then the (1 — &)100% Wald confidence
interval of 7 is given by #FZ_y,,./V (%), where Z,_
wn 18 the quantile 1 — /2 of the standard normal
distribution. Therefore, the observed width of the CI is
W =2Z_42JV(#). The
2Z1_y27V (%) (added and subtracted from the
observed proportion, 7 ) in the CI is defined as /2
(where W is the full width of the CI; W or W/2 can be
set a priori by the researcher depending on the desired
precision). Therefore, if the researcher wants a CI
width of w for the full width, we can obtain the
required number of localities, /, by making

7(1— 7 7(1— A2 52
7., \/{na 7)}203 7 z;:?} o +¥n(:?

equal to quantity

= W

and solving for /. The required number of localities, /,
is equal to:

l= 4Zj;za/2 [{ft(l—ﬁ')}zoﬁ + {ﬁ'(l_ﬁ)}zo'g n V(&)]

m mg

(13)

Recall that Equation (13) is useful for obtaining
the required number of localities given a number of
fields, pools per field and a pool size. However, this
sample size (Equation 13) is not optimal.

5.2 How to obtain a Certain Power

Assume we are interested in testing H,:#&

=7,vs H,: 7 >7,. For example, the European Union
(Anonymous 2003) requires that the proportion of
genetically modified (GM) seed impurities in a seed lot
be lower than 0.005. Here, given a number of fields (m),
pools per field (g) and pool size (s), we want to reach
a power of (1 — y) with significance level o, when
0 =| 7, — 7, |. To perform a test with a type I error rate
o and a type II error rate ¥, the following must hold:

Zi_q = (B =7) IV (%) and Z,_, = (7~ 7))/ |V (%)

Here V(#,) is the variance of # but using the
value of the null hypothesis. Both Z, _ and Z, have a
standard normal distribution since the variance
components are assumed known. According to Cochran
(1977) and Moerbeek et al. (2000), this results in the
relation:

__ lep
(Zig+ 71y (14)

If we change the alternative hypothesis to
H,:7 <7,, Equation (14) is still valid, but not if the
alternative is H,:7 # 7,, in which case Z, , needs to
be replaced by Z,_,, in Equation (14).

Then, given a certain number of fields, pools per
field and pool size, which is the required number of
localities, /, needed to achieve a power level (1 — ) for
a desired 0? To obtain the required /, we need to

{(#(1-7p) )02 + {7 (1-7) )0}
[ Im

solve for [ from {

PRACY T - .
W = Zio + Zl—y)zl Therefore, by solving for

1, the required number of localities (/) is equal to:

 ZiatZiy)
- eP

« [{ﬁo(l_ﬁo)POﬁ + {ﬁo(l—ﬁo)]ZO'g N V((SO)}US)
m

mg
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Equation (15) gives the required number of
localities given the number of fields (), number of
pools per field (g) and pool size (s), but this is not
optimal.

6. OPTIMAL SAMPLE SIZES UNDER
CONSTRAINTS FOR A GIVEN POOL SIZE

6.1 Minimizing Variance Subject to a Budget
Constraint

Assume that we have a fixed sampling budget for
estimating the average population proportion 7Z. The
question of interest is: what is the optimal allocation
of localities (/), fields (m) and pools per field (g), given
a pool size (s), for estimating the proportion with
minimum variance, subject to the following budget
constraint?

C = Imgsc, + Imgc, + Imc, + Ic,
(c,>0,L,m g s=2,u=1,2,3,4) (16)

where C is the total sampling budget available, c, is the
cost of sampling and measuring a plant in an already
sampled field, ¢, is the cost of testing a pool of size
(8), ¢4 is the cost of sampling and measuring a field,
and ¢, is the cost of sampling and measuring a locality.
The values of c; and ¢, are average values, since at the
time the survey is being planned, it is not known which
localities and fields per locality will be sampled and the
travel times are not the same for all localities and fields
per locality. The budget C and costs ¢, ¢,, ¢; and ¢,
are given in dollars but can be changed to any other
currency. Optimal allocation of the units can be
performed using Lagrange multipliers. By combining
Equations (12) and (16), we obtain the Lagrangean

L(l,m, g A)=L=V(#) + AlC —(Imgsc, + Imgc, +
Imcy +lc,)] (17)

where V() given by Equation (12) is the objective
function that will be minimized with respect to /, m and
g, given a pool size (s) subject to the constraint given
in Equation (16), and A is the Lagrange multiplier. The
partial derivatives of Equation (17) with respect to A,
I/, m and g are

g—i =C—(Imgsc +Imgcy +1Imcz +1cy) =0;
C
then / =

mgscy +mgc, +mez + ¢y

a—L=—L6)—ﬂlm(scl +¢))=0;
og g*ml

V(o
then A= — @

g2m2(sq +¢y)

21— 71252
a—Lz—{”(l Do, V©) = Allgsc; +1gc; +1c;1=0
om Im? m2gl

o __(Z#1-m)Pop {#1-%)}0p V(S)

ol ? mi? I’mg

—Almgsc; + mge, + mey +¢41=0

By solving these equations, we obtain the optimal
values for /, m and g (see Appendix A):

C € %
I= , where m = >
mgsc; +mgc, + mey + ¢y G oa

_ %] \/V(é')
£ \/(SC1+C2) {(7(1-7)}o, (18)

First, we calculate the number of pools per field,
g, and then we can calculate the number of fields per
locality, m. Using these values, we calculate the number
of localities to be sampled, /. To maintain the
hierarchical structure, g, m and / should be rounded out
to the nearest integer. They are assumed equal to 2 if
g, m and / are less than 2. Note that Equation (18) is a
generalization of the optimal sample size for continuous
data in three-level sampling given by Cochran (1977).

The best practice to calculate the optimal values
of g, m, and [/ is to provide reasonable estimates of the
costs (C, ¢, ¢,, ¢; and ¢,) pool size (s), 7,S,, Sp,
variance components (02,07). However, we know that
this is not always easy thus for this reason we
encourage the researchers to perform a pilot study with
the same structure (three stages with pooled data) to be
able to compute reasonable estimates. Also, we
encourage to perform a literature review and examine
similar studies so that getting appropriate values of the
required parameters to be able to estimate the optimal
values of g, m, and /. For choosing the cost values (c,,
¢y, ¢; and ¢,) we believe that when planning a study
with this structure, the researchers need to investigate
carefully these costs since they can change drastically
from one region to another depending of the socio
economic and geographical aspects of the region. Also,
if the researcher does not have experience in this type



Osval A. Montesinos-Lopez et al. / Journal of the Indian Society of Agricultural Statistics 69(1) 2015 27-47 | 33

of studies she/he need to consult experts that can help
her/him to define the cost values to choose. In summary,
a combination of performing a pilot study, with an
appropriate literature review and consulting with
experts are the factors to consider for choosing the most
reasonable parameters for calculating the optimal values
of g, m, and /.

6.2 Minimizing the Budget to obtain a Certain
Width of the Confidence Interval

So far, the allocation of units minimizing V (7%)
has been derived under the condition that budget
sampling and measuring is fixed to a certain value.
However, many times the researcher wants the optimal
allocation of units to minimize the sampling and
measuring budget in order to obtain a specified width
(w) of the confidence interval (CI) of the proportion.
The solution to this optimization problem is the same
as minimizing the total budget subject to a variance
constraint. The variance constraint is obtained from the
(1 — a)100% Wald confidence interval of

A —

7( +Zl_g\/V(7%)) (given in section 5.1). Since the
2

width of the Cl is equal to W = 2Zi_4/2/V (%), and
since we specified the required width of the CI to be
o, this implies that V(#) = w?/4Z2 ,,,. Therefore, the
optimization problem is to minimize the sampling
budget as given in Equation (16) under the condition
that V(%) =w?/4Z} ,,, is fixed. That is, we want to
minimize C = Imgsc, + Imgc, + Imc, + lc, subject to
V(#)=V,. Again, using Lagrange multipliers, the
corresponding Lagrangean is: L(/, m, g, A) = L = Imgsc,
+ Imgc, + Imcy + lc, + A[V(%)=V;]. Now the partial
derivatives of L with respect to A, /, m and g are:

oL _[Z(1-7M)Vo; (ZA-7)Pojy V() _

oA l Im Img 0
21— #)12 52
then l=[{7f(1—7~z)}20'a2+{”(1 Y0 +V(5)]/Vo
m mg
a—L =Im(sc;+¢,) —ﬂm =0; then
og Img?

_1282m%(sc; +¢))

V(d)

a—L= lg(sci+cy)+lc —i[{ﬁ(l—ﬁ)}zag +m] =0
am lm2 g

a—L= mg(sc +¢y)+mez+cy —A

ol
. [{ﬁa—ﬁ)}%g -7 +v<5>}0

2 mi? I’mg

By solving these equations, we have that the
optimal values are (see Appendix B):

I=[{7#(1-7)}Po;

F(1-7)2o2 V(S
ARG ) /A )]/Vo,where
mg

¢4 O 140
me= a0 [ o VO (19
3 O, (SCI +C2) 7[(1—7[)0-17
Note that the number of fields per locality, 72, and
the number of pools per field, g, required when we

minimize the budget subject to V(7)=V, (Equation

19), are the same as when minimizing V(#) subject
to a budget constraint (Equation 18). However, the
expression for obtaining the required number of
localities, /, is different. In this case, the value of

Vo =a?/4Z2 ,,, is substituted into Equation (19) and
the expression for the required number of localities is

472 zA-R)Pa} V(5)}‘
m

l=—;2“/2 [{ﬁ(l—ﬁ)}zag

mg

Another way of obtaining the same solution to this
problem is given in Appendix C.

6.3 Minimizing the Budget to obtain a Certain
Power

Assume a threshold is defined a priori, and our
main interest is to test Hy:Z =7, vs H,: 7% > 7,. We
want to determine a sampling plan (i.e., /, m and g
given a pool size) for minimizing the budget required
for this test to have a specified power (1 — y) and
significance level o, when 6 = |7 — 7, |. Again,
V(y;o\) is a fixed quantity and equal to Equation (14),
since we want to minimize the total budget to obtain
a specified power (1 — y). Therefore, we want to
minimize C = Imgsc, + Imgc, + Imc, + Ic, subject to
V(%) =V,. The optimal allocation of fields and pools
per field is also given in Equation (19) but using
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Equation (14) to get V.. Here, V(5,)
2
(Se—alys AP (1-7D)
s2(Se+ Sp—1)3/s
and 7, in place of Z. This implies that

is used in place of ¥(d),

[= (Zl—a + Zl—y )2
|6F

[{ﬁo(l—ﬁo)}ztﬂ+{ﬁ°(l‘ﬁ°)}2"5 +V(5°)}

m mg

NZED

Cy Oy _ C3
where m= |——>8= — — .
3 O-a N&| +C2 72'0(1—7[0)0'1,

7. TABLES FOR DETERMINING THE
OPTIMAL SAMPLE SIZE ASSUMING
EQUAL LOCALITY AND FIELD SIZES

This section contains Tables 1 and 2, which help
to calculate the optimal sample size assuming equal
locality and field sizes given a pool size (s). These two
tables can be used to minimize the variance given a
budget constraint or to minimize the budget given a
variance constraint. For example, assume that we want
optimal values of /, m and g to minimize the V(%)
given a pool size (s = 20) and a budget constraint equal
to C'=20000. Also assume that after a literature review,
we estimate ¢, = 10, ¢, = 35, ¢; = 400, ¢, = 1200,
02=0.25, 07=015, 8, = S, =095, and 7=0.01.

This implies that c,/c, = 3.5, cj/c, = 40, £ =120,

G
Then, looking at Table 1 in the intersection between the
value of 7=0.01 (column four) and the value of

o} =0.15 (second column) for §, = Sp =0.95and s =

20, we get the required optimal values of fields per
locality (m = 2, column 3) and pools per field (g = 9,
column 4). Finally, using the optimal values of m and
g and the cost, we can calculate the optimal number of
localities as:

C
N mgsc; +mge, +mey + ¢y
_ 20000
(2)(9)(20)(10) +(2)(9)35 + (2)(400) +1200
=321=4

/

Table 1. Optimal sample sizes (m, g) given a pool size
(s = 10, 20) for group testing in three stages for five

values of 07.

7
o> ml0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
S,=5,=090
0.05 2[ 41 25 20 17 16 15 14 14 14 13
01 2[29 18 14 12 11 11 10 10 10 9
s=10015 2[ 23 15 12 10 9 8 8 8
02 2/ 20 13 10 9 7 7 7
0252/ 18 11 9 8 7 7 6 6 6 6
005 2[ 19 13 11 10 10 10 10 10 11 12
01 2|14 9 8 7 7 7 7 7 8 8
s=20015 211 8 6 6 6 6 6 6 6 7
02 2f10 7 6 5 5 5 5 5 6 6
0252 9 6 5 5 4 4 5 5 5 5
S,=$,=095
005 2[ 32 21 17 15 14 13 13 12 12 12
01 2[23 15 12 11 10 9 9 9 8 8
s=100152/ 19 12 10 9 8 8 7 7 7 7
02 216 11 9 8 7 7 6 6 6 6
025 2115 10 8 7 6 6 6 5 5 5
005216 12 10 9 9 9 9 9 910
01 211 8 7 6 6 6 6 6 7 7
s=200152 9 7 6 5 5 5 5 5 5 6
02 2 6 5 5 4 4 4 4 5 5
025 2 5 4 4 4 4 4 4 4 4
5,=5,=098
005 2[ 28 19 16 14 13 12 12 11 11 11
01 2[20 14 11 10 9 9 8 8 8 8
s=100152[ 16 11 9 8 8 7 7 7 6 6
02 2[14 10 8 7 7 6 6 6 6 6
0252[12 9 7 6 6 6 5 5 5 5
005 215 11 9 9 8 8 8 8 8 9
01 2110 8 7 6 6 6 6 6 6 6
s=200152 8 6 5 5 5 5 5 5 55
02 2 7 5 5 4 4 4 4 4 4 4
0252 7 5 4 4 4 4 4 4 4 4

Ten values of the proportion (%) and two values of o-g =0.25,
0.5, 2= 3.5, = 40, & =120 and three combinations of S,
a a q
and S -
Table 1 also can be used to calculate the optimal
allocations of /, m and g given a pool size (s) to
minimize the budget, C, subject to a variance constraint
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Table 2. Optimal sample sizes (m, g) given a pool size
(s = 10, 20) for group testing in three stages for five

C
values of =

a
7z

cy/c, m|0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

S, =5,=0.90
15 2| 12 8 6 5 5 5 4 4 4 4
25 2116 10 8 7 6 6 6 5 55
s=10 35 2119 12 9 8 7 7 7 6 6 6
45 2122 13 11 9 8 8 8§ 7 7 7
552|124 15 12 10 9 9 8 8 8 8
15 2 4 3 3 3 3 3 3 3 4
25 2 5 4 4 4 4 4 4 4 5
s =20 35 2 6 5 5 5 5 5 5 5 6
45 2| 10 7 6 5 5 5 5 6 6 6
55 2| 11 8 7 6 6 6 6 6 7 7

S,=S,=0.95
15 2| 10 7 5 5 4 4 4 4 4 4
25 2] 13 8 7 6 6 5 5 5 55
s=10 352115 10 8 7 7 6 6 6 6 6
45 2117 11 9 8 7 7 7 6 6 06
55 219 13 10 9 8 8 7 7 7 7
15 2 4 3 3 3 3 3 3 33
25 2 5 4 4 3 3 3 4 4 4
s=20 35 2 5 5 4 4 4 4 4 4 5
45 2 6 5 5 5 5 5 5 55
55 2| 10 7 6 5 5 5 5 5 5 6

S,=S,=0.98
15 21 9 6 5 4 4 4 4 4 3 3
25 21 11 8 6 6 5 5 5 5 4 4
s=10 352113 9 8 7 6 6 6 5 5 5
45 2115 10 9 8 7 7 6 6 6 0
55 216 11 9 8 8 7 7 7 7 6
1525 3 3 3 2 2 2 2 33
252 6 4 4 3 3 3 3 3 33
s=20 35 2| 7 5 4 4 4 4 4 4 4 4
45 2| 8 6 5 5 4 4 4 4 4 5
55 21 9 6 5 5 5 5 5 5 55

Ten values of the proportion (7). 0'13 =02, 0'a2 =(.5, three

L G Cy
combinations of S, and Sp, —= =35, and — =25, 55, 85, 115,
q q
145.

equal to V, = w?/4Z2,,,. To get a CI width of

w=20.015 \gi(t)lis%z%, then Z, .= 1.96, which implies
—Z('l‘%g) =0.00001464. Assuming the same
values of ¢, ¢,, ¢, ¢, o2, o7, S,, Sp, #and s = 20,
then the optimal values of fields per locality and pools
per field are 2 and 9, respectively (using Table 1 exactly
as above). However, now the optimal number of
localities is calculated as:

that V=

= [{,m_ Dor s FU=DPOE 0.0007603} "
m

mg

{0.011-0.01)}?(0.15)
2

= [{0.0l(l -0.01)}%(0.25)+

+m}/0.00001464 =6.23=7

(2)9)

If we wish to calculate the optimal values for a
given power, we can also use Table 1 and the last
formula to calculate the required number of localities
but using the V|, calculated with Equation (14). Table
2 should be used exactly as Table 1, assuming a given
pool size; the only difference is that now there are five

options for the ratio C—3,C—4 and only one value of

aq q
o2 =0.20.

8. ADJUSTING FOR UNEQUAL LOCALITY
AND FIELD SIZES

In practice, unequal cluster sizes (localities and
fields) are the rule. Cluster size variation increases bias
and produces a considerable loss of power and
precision in the parameter estimates. For this reason,
we will calculate the relative efficiency of unequal
versus equal cluster sizes (localities and fields) for
adjusting the optimal sample size derived under the
assumption of equal localities and field sizes. The
definition of the relative efficiency of equal versus
unequal cluster sizes is:

Var(7 | ¢ equal)
Var(# | ¢ unequal)

RE(%) = (20)
where Var(7 | ¢ equal) denotes the variance of the
proportion estimator given a design with equal cluster
sizes, and Var(7 | unequal) denotes a similar value
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for an unequal cluster size design, but with the same
number of localities (/), fields (m) and the same total

l m; .
number of pools (N = 25:12 i gij) as in the equal

cluster size design. Given that it is possible to have
variability in locality and field sizes, one RE(7) will
be calculated for localities (RE(7Z);) and another for
fields (RE(%) ¢) to incorporate both variabilities. To
derive the RE(%);, we assume that only localities have
variations in size, whereas to derive the RE(7) s WE
assume that only fields have size variation. If we wish
to calculate the total relative efficiency, it should be
equal to RE(%)=RE(7), X RE(7),

Assuming only localities have different sizes, and

using Equation (20), RE(%), is equal to:
o +V(5)
m mg

21 1{0'2*+0b +V(§)}/l2
= m; m;g

0¥ +-2-

RE(ﬁ')l =

%)

_ m :”_1+05112{[ m; }
¥ l[azx 02*}” mo 1= v | (21)
= m;

where, 62 = {#(1-#))*02, o} ={ZA(1-7) 0}, 62

V()
g

* k 3
=0} + and o =02/ 02",

Now, assuming unequal field sizes in locality i, the
relative efficiency of locality 7 (RE) is:

(of* + —V(_é) )/ml- (of* +V(_§)}

Kb = . o B 85

m; * V( ) mj * V( )
2j=1|:0'13 +gj:|/mz2 2,‘:1{0-13 +gj}/ml

g mi5|8itar

where
=V(d)/of".

Therefore, the average relative efficiency of the /
localities, assuming unequal field sizes, is equal to

. gtoy 1 8j

Note that Equations (21) and (22) can be

considered moment estimators of "1t E U
m Ul + a

and & Jr_af E Yy
g 8r + Olf
locality and field sizes (m, i=1,2, ..., I; gj, =1,2,.

m) are realizations of two random variables U, (Wlth

} respectively, assuming that

mean u, and standard deviation o) and U, (with mean
My and standard deviation Gf), respectively. Equations
(21) and (22) are therefore equal to the equations
derived for obtaining the RE of equal versus unequal
cluster sizes in cluster randomized and multicenter trials
given by Van Breukelen et al. (2007) for recovering the
loss of power when estimating treatment effects using
a linear model. Here we use RE to repair the loss of
power or precision when estimating the proportion
using a random logistic model for group testing.
Defining A, = (u,/(u, + ) and the coefficient of
variation of the random variable U, by CV,, = o,/1,,
with k = [, f, then the RE(#), and RE(%); were
expressed as the relative efficiency derived by Van
Breukelen ez al. (2007, pp. 2601-2602; see Appendix
D), and a second-order Taylor series approximation of
Equations (21) and (22) can be obtained. For localities,
this is equal to

RE(7), ~{1-CVPA4(1-4)} (23)
And for fields, it is equal to:

RE(#) = {1-CV}A (1= Ap)) 24)

This is possible because the expectation part of the
moment estimators of Equations (21) and (22) is equal

to E[LJzﬂk{l—CVﬁﬂk(l—ﬂk)} with k= [, f.
Uy +oy

RE(#); and RE(#); do not depend on the number of

localities and fields, respectively, but rather on the
distribution of cluster sizes (mean and variance of
localities and fields) and intraclass correlations. Note
that CVf = 0 means that the fields are equal and
RE(7); =1 means that only the sample of localities
should be adjusted. Also, to correct for the loss of
efficiency due to the assumption of equal locality sizes,
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one simply divides the number of localities (/) by the
expected RE resulting from Equation (23). The
adjustment for unequal field sizes is the same, but using
Equation (24). For practical purposes, we will denote
RE(#), = RE, and RE(%); = REj.

9. ANUMERICAL EXAMPLE FOR
ESTIMATING THE PRESENCE OF
TRANSGENIC MAIZE

In 2004, a study was conducted to detect the
presence of genetically modified maize plants in
farmers’ fields in two localities (7 and 11) in the Sierra
Juarez region of the Mexican state of Oaxaca (see Table
3). Thirty fields were sampled in each locality, and 300
leaves were collected from plants randomly chosen
throughout each field. Six pools of 50 leaves each were
formed from the 300 leaves. DNA was extracted from
each pool sample and the presence of CaMV-35S
sequences was determined by polymerase chain
Table 3. Number of pools comprised of leaf samples from

two localities in Oaxaca, Mexico (2004). With a positive
35S PCR band based on 30 fields per locality and 6 pools
per field, each composed of 50 maize leaves.

Locality Field Positive Locality Field Positive
pools pools
7 6 1 11 7 1
8 1 17 1
11 1 19 1
15 1
17 2
25 1
27 1
30 3

reaction (PCR) (see Table 3) (Pineyro-Nelson et al.,
2009).

Assuming that we wish to conduct another study
in this region of Oaxaca, we can estimate the parameters
(%, 02, 07) required for calculating the optimal sample
size using the information given in Table 3, since the
authors only reported the total number of positive fields
and pools per locality. Assuming a non-informative
sampling process, we estimated the parameters
(%, 02, 07) by fitting model (1) to these data but taking

into account the pooled data (see in Appendix E the
Glimmix code used in the estimation process). The
resulting estimates were 7 =0.0024, 02 =0.57 and
o7 =0.77. After performing a literature review, we
decided to use S, = 0.999, Sp =0.997 and C = 20,000
(total budget for the study); ¢, = 10 is the cost of
enrolling the plants in the study, ¢, = 35 is the cost of
each diagnostic test, ¢; = 300 cost of enrolling a field
in the study, and ¢, = 500 the cost of enrolling a locality
in the study. Next we will illustrate how we obtained
the optimal sample sizes.

For minimizing the variance. Once again,
we assume a pool size of s = 50. Then 77 =
0.999 + (1 — 0.999 — 0.997)(1 — 0.0024)>°
2,
(Se—7P)s 7P (1-7P)
52(S, +8, —1)?/s

0.115755 and ¥(8) =

2
_ (0.999-0.1 15755)50 2(0. 115755)(1-0.115755)

502(0.999 +0.997 —1)2/50
0.0 000522. Therefore

JV©§)

(&
g = \/ (sci+¢,) 7(1- 7)oy,
J0.0000522

f 300
~ \((50)(10) +35) 0.0024(1—0.0024)(0.8775)

=2576=3
— €4 Op _ [500 0.8775 =1.50=~2,
o, \300 0.755
C
I= mgsc, +mgc, +mez + ¢y
_ 20000
B (2)(3)(50)(10)+ (2)(3)(35) + (2)(300) + 500

4.64 = 5.

This means that we need to select five localities
at random from the population of localities, two fields
at random from each selected locality, and three pools
per selected field. Thus the total number of plants that
will be used in the study should be / x m x g x s =5
x 2 x 3 x50=1500 plants, i.e., 150 plants per selected
field.
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Now, if locality and field sizes are unequal, how
do we compensate for the loss of efficiency due to
varying cluster sizes? Assume the mean
and standard deviation of locality and
field sizes are u, = 177 and o, = 81.5, respectively,

. 81.5
with k& = I, f. Then CVl:ﬁ = 0.4605, o, =

op + {0.0024(1 - 0.0024)12(0.77) +

177

V) 0.0000522
g

o {0.0024(1-0.0024)}20.57

= 1.44, 50 A, = (177/(177 + 1.44) = 0.9919. Therefore
RE, = {1 — (0.46052)(0.9919)(1 — 0.9919)} = 0.9983.
Thus efficiency for localities can be restored

by taking [= 4.64 =4.6479 =5 localities. Now,
0.9983
, oy, 8L _ AN
for fields, the CVy =177 " 0.4605 o = o7

0.0000522
{0.0024(1-0.0024)}>0.77

11.83) = 0.9374. Therefore RE, = {1 — (0.4605°)
(0.9374)(1-0.9374)} = 0.9876. Thus efficiency for

=11.83, so /lf= 77/(177 +

fields can be restored by taking m = =1.519

0.9876
= 2 fields.

For a desired CI width. Now suppose that the
researcher requires a 95% confidence interval estimate,
with a desired width for the proportion of transgenic

plants that is equal to W = (4, —7;) < w=0.005.

Therefore, Z, s, = 1.96 and V, = w?/4Z} ,,,=

0.005?
4%1.962

= 0.000001627, assuming the same

values of s, S, Sp, 02, Of, 7, C4 C3 C

and ¢, given for minimizing the variance.

Using Equation (19), we obtain that
300 1/0.0000522

&7\ ((50)(10) +35) 0.0024(1-0.0024)(0.8775) 3

_ POOOBTIS o0 while the number of
m = 300 0'755 . > Wihlle € number o

localities is equal to:

I = [{0.0024(1 — 0.0024)}2(0.57) + {0.0024

0.0000522

1-0.0024)}2(0.77)/2
( BTN + =

=9.3669 = 10

1/0.000001627

Since g and m do not change, we need 150 plants
per field, 2 fields per locality and 10 localities to reach
the required width (0.005) of the 95% CI. Now the
budget is two times larger than that obtained for
minimizing the variance given a budget constraint.
However, this sample size is only valid for equal cluster
sizes. If adjustments need to be made for unequal
locality sizes and field sizes, they can be carried out

m .
and m* = , respectively.
It ft

by I'=

Now assume that we wish to determine the
required number of localities without a budget
constraint, assuming 2 fields per locality, a pool size
of 50 and g = 10 pools per field. Using Equation (13)
and assuming the same values for w, o, S,, S - o7, and
7 that were given for minimizing the variance, we
have

1—4(1'—96)2 0.0024(1 — 0.0024)}2(0.57) + {0.0024
- 0.0052 [{ * ( - M )} ( M ) { M

1 —0.0024)}2(0.77)/2 + —0'0000522] =5.623=6

( - Y. )}( . ) (2)(10) - =

This implies that we need a sample of 6 localities,
2 fields per locality and 10 pools of size 50 per field.
These values do not change, assuming unequal locality
and field sizes with the same mean and standard
deviations.

For a desired power. Now suppose that we
need to know the budget and sample size required
for testing H,:74, = 0.0024 vs H,:7%, > 0.0024 at a
o = 0.05 significance level with a power
(1 =9 =0.9 (90%) for detecting 6 = 0.003 and using
the same parameters (s, S,, S, - 0',3, ¢y €y, ¢y and ¢,) as
in the example for minimizing the variance. Then,
o 0.0032
="

= — % =0.000001051.
(1.645+1.282)2
Since ¥(8,) = V(8) = 0.0000522, 7#=7#,, then

300 1/0.0000522

€7\ ((50)(10) +35) 0.0024(1—0.0024)(0.8775) 3
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—,/@0'8775 = 1.50 = 2, while th ber of
m = 3000'755 = 1. = <, wnile € numboer o

localities is equal to:
[=1{0.0024(1 — 0.0024)}2 (0.57) + {0.0024(1 —

0024)}2(0.77)/2 + Wl/o 000001051 = 14.5

Here, again, we need 150 plants per field, 2 fields
per locality and 15 localities to reach the required
power of 90%. This means that the required budget is
three times larger than that obtained for minimizing the
variance given a budget constraint. To compensate for
the unequal locality and field sizes and assuming the
same mean and standard deviation of the sizes (u, =
177 and o, = 81.5, for k = [, f), we have to multiply
the localities and fields obtained by correction factors

1
and
RE, REﬁ

, respectively.

Now let’s assume that we decided to use 10 pools
per field (g), 2 fields per locality and a pool size of 50,
without a budget constraint and using the same values
of S, Sp, o2,0%,a,(1-y),0= 7 —7, asabove. Then

using Equation (15), the required number of localities,
/, is equal to:

;_ (L645+1.282)2

0.0032 {{0.0024(1—0.0024) 12(0.57)

+ {0.0024(1-0.0024)}>(0.77) + 0.0000522
2 (2)(10)

=87=9

This means that to perform the study, we need 9
localities, 2 fields per locality and 10 pools per field
of size 50. These values do not change, assuming
unequal locality and field sizes with the same mean and
standard deviation.

10. DISCUSSION AND CONCLUSIONS

In this paper, we derived optimal sample sizes for
group testing in a three-stage sampling process under
a budget or variance constraint. Given a pool size (s)
and using Lagrange multipliers, we derived formulae
to produce the optimal allocation of localities (/), fields

(m) and pools per field (g). Although these formulae
are similar to those derived by Cochran (1977; p. 285),
they assume that all localities and fields are of the same
size. However, in practice, this assumption is rarely
satisfied; for this reason, we derived correction factors
(inverse of the relative efficiency) to adjust the optimal
sample sizes for unequal locality and field sizes. We
also show examples of how to calculate the optimal
values of /, m and g using these formulae when we wish
to obtain a certain precision (width of the confidence
interval) or a specified power.

If sample sizes for precision or power without a
budget constraint are required, Equations (13) and (15)
can be used for precision and power, respectively.
However, these sample sizes are not optimal, since the
values of m, g and s are given by the researcher in a
non-optimal way.

There are two important aspects that should be
taken into account, given that our optimal sample sizes
were derived using a first-order TSE approach under
the assumption that the variance components are
known. First, the optimal sample sizes will be slightly
biased, based on Monte Carlo simulations (Goldstein
and Rabash 1996, Moerbeek and Van Breukelen
2001a,b, Moerbeek and Maas 2005, Candel and Van
Breukelen 2010). Second, we assumed a relatively
simple covariance structure for deriving the optimal
sample sizes. These approximate sample sizes should
be reasonable and can be calculated easily. However,
further study of the performance of the proposed
optimal sample sizes is required. Finally, it is important
to carefully choose the required parameters in order to
be able to obtain the optimal values of g, m and /, since
if they are smaller than the true values (underestimated)
the estimated sample size (g, m, and /) will be smaller
as well, whereas if they are larger than the true values
(overestimated) we will obtain sample size (g, m, and
/) larger than the required in order to fulfill the a priory
specified precision and thus researchers will be wasting
resources.
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Appendix A. Derivation of the optimal solution for minimizing V(#) subject to C=lmgsc, + Imgc, + Imc; + Ic,
(c,>0,l,m g s>2,u=1,2,3,4) given the pool size (s)

By combining Eq. (12) and (16), we obtain the Lagrangean

L(l,m, g, A)=L=V(#) + A[C — (Imgsc, + Imgc, + Imc; + Ic,)] (A1)
t(1-7)2o2 {(#0-7)Po} V(O 2 o V(O
where V(%) = -7\ oy + l-m)) o, + ©) =O-—a+o-i+ﬁ. A is the Lagrange multiplier. The partial
) Im Img l Im Img
derivatives of Eq. (17) with respect to A, m and g are
aL—C—l +1 +1Imcy +1cy) =0; then /= .
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Appendix B. Derivation of the optimal solution for minimizing C = Imgsc, + Imgc, + Imc, + Ic, subject to V(%)

By combining Eq. (12) and (16), we obtain the Lagrangean
L(I, m, g, A] = L = (Imgsc, + Imgc, + Imc, + Ic,) + A[V(#)=V;]

where V(#) = FA=MPoi (ZA-D} o} V()

[ Im Img
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Appendix C. An alternative way of minimizing the values of m and g given a pool size and a budget or variance
constraint

In section 4.6 we derived optimal values for locality (/), fields () and pools per field (g) given a pool size (s)
using Lagrange multipliers. We found that minimizing the variance given a budget constraint or minimizing the
budget given a variance constraint produces the same optimal values for m and g due to duality. Only the expression
for obtaining the optimal allocation of localities is different. For this reason, according to Cochran (1977), we
obtain the same solution by minimizing the product of the variance of interest by the budget constraint. This means
that the problem of minimization is the same as minimizing the product:

C(m, g) = V(#) (Imgsc, + Imgc, + Imc; + Ic,)

o V()

Clm, g) = [03* T

m . mg } [c, + mcy+mg (sc, + ¢,)] (28]

The Cauchy-Schwarz inequality (Cochran 1977, p. 77) is

(Xn AN B — Xy AuBy)* = X Xis j(AB; — AjB;)* 20 (C2)

Therefore

(X0 AN B 2 (X 4By (C3)

/0-2* V(5
Making 4, = /02", 4, = #, ¢y, By= \mcsy, By = \Jmg(sc +c,), we can express (C1)

as (C3):

ot : :

4 4 40 )][c4+mc3 +mg(sc +cy)] >(\/O'2 Cy +\/0'§ [ +\/V(5)(sc1+c2)) (C4)
m mg

The product will be minimized, provided that the equality of Equation (C4) holds. Setting the equality of Equation

(C4) and expanding both sides, we find that

loz" +

= 2>k a constant (C5)
Joi' o |0
m
and
\/mc3 _ \/mg(scl +c) Sk
[ Vo) (C6)
m mg
from (C5)
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and also from (C6)

\/mc3 _ \/mg(scl +¢)) _ mJe _mg (s¢+¢) - :\/ G \/V(5)
\/ o \/V(é) o; Vo) (s +0) (Z(-7))0,,
m mg

If we wish to minimize the variance given a budget constraint, the optimal allocation of localities can be
obtained by solving the budget constraint for /, and we get: I = C/(mgsc, + mgc, + mc, + c,). However, if we
wish to minimize the budget given a variance constraint (¥,)), the optimal value of localities can be obtained

. o (Z1-%))*0 V(5)
by solving the variance constraint for /, and we get: /* = {Z(1-7%)}?07 + - Lt -

1/Vo. Thus
g

we get the same solution by using Lagrange multipliers.
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Appendix D. Taylor series approximation (Eq. 23) of the RE in (Eq. 21) given by Van Breukelen ez al. (2007).
Taylor series approximation (23 and 24) is derived from the RE of Equations (21 and 22) in four steps.

Step 1. Let the g; values be independent realizations of a random variable cluster size U with expectation u, and
standard deviation o,. Equations (21 and 22) are moment estimators of

.. gt U
RE(7) = z E(U+aj (F1)

where o= (1 — p)/p = 0.
Step 2. Define d = (U — u,); then the last term in (F1) can be written as:

e P e )
U+a M, +o+d W, +a |\ 1+(d/(u,+a))

The last term is a Taylor series [Mood ef al. (1974), p. 533, Equation (34)]:

1 & —d Y
1+(d/ @, +a)) =2
S\, +a

if ((u, + a) <d <(u, + a) to ensure convergence.

Since d = U~ u, and a 2 0, this convergence condition will be satisfied, except for a small probability P(U> 2u,
+ ) for strongly positively skewed cluster size distributions combined with large p (= small ). Thus we have:

U\ | ta+d o [ =d Y
E(U+a)_E{/,¢n+a] fzo(y,ﬁaJ} (F2)

Step 3. If we ignore all terms d/ with j > 2, and rearrange terms in (F2), we will have

U \_i_cvean—
E(U+aj AM1-CV2A(1-1)} (F3)

where A = (ug/ug + ) € (0, 1], assuming g = My and CV = O'g/ug is the coefficient of variation of the random
variable U.

Step 4. Plugging (F3) into (F1) gives:
RE(7), ={1-CV2A(1-A)} (F4)
Remark
Ignoring in (F2) only those d’ terms with j > 4 instead of 2, will give
RE(7), =1-{(1-D)[ACV? — ACV3skew + A3CV*(kurt + 3)]} (F5)

where skew and kurt are the skewness and kurtosis of the cluster size distribution, that is, skew = the 3" central

moment of the U divided by &3, and kurt = the 4" moment of U divided by ¢, minus 3 (see, for example, Mood
et al., 1974, p.76).
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Appendix E. Glimmix code to estimate the proportion and variance components.

data corn2004;
input Locality Field pool yp;| 11
cards; 11
11 1 1 0 11
11 1 2 0 11
11 1 3 0 11
11 1 4 0 11
11 1 5 0 11
11 1 6 0 11
11 2 1 0 11
11 2 2 0 11
11 2 3 0 7
11 2 4 0 7
11 2 5 0 7
11 2 6 0 7
7
7
11 29 1 0
11 29 2 0

29

29

29
29
30
30
30
30
30
30

S o S VU G G

AN N BN~ NN R WD, N W

S O O O O O O O O O o o o o o o

e N B B B I I B B B Y

[

29

29
29
29
29
29
30
30
30
30
30
30

AN LAWY = NN R WD~

S O = = =0 O O o o o O

proc glimmix data=corn2004 ;
class Locality field;
model yp(event='1")= /solution dist=binary;
random intercept/ subject=Locality;
random intercept / subject=field(Locality);
prod=1; s=50;
doi=1tos;
pl=exp(_linp )/(1 + exp(_linp ))
prod = prod*(1 - pl);
end;
~MU_ =1 - prod,;

run;

>



